



Tetrahedron Letters 44 (2003) 2907–2909

## TETRAHEDRON LETTERS

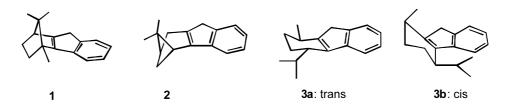
# Preparation of chiral annulated indenes derived from nopinone, verbenone and menthone

Ronald L. Halterman\* and Lisa D. Crow\*

Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019, USA

Received 31 January 2003; revised 12 February 2003; accepted 13 February 2003

**Abstract**—A three-step procedure for the synthesis of chiral annulated indenes is described in which nopinone, verbenone and menthone are converted to their enolate form, alkylated with 2-bromomethylbromobenzene, ring-closed with CrCl₂/cat. NiCl₂ and dehydrated with catalytic acid. © 2003 Published by Elsevier Science Ltd.


#### 1. Introduction

Chiral indenes are especially desirable as ligands for the preparation of indenyl- and bisindenylmetal complexes.1 Although a good variety of methods for the preparation of chiral monosubstituted indenes exist,<sup>2</sup> relatively few methods have been developed for the preparation of chiral annulated indenes. These methods include thermally-induced rearrangements of spiroannulated indenes<sup>3</sup> and Nazarov cyclizations of phenyl substituted allylic alcohol derivatives of (1R)-(+)nopinone and (1S)-(-)-verbenone.<sup>4</sup> Previously, we reported the development of a methodology that allowed for three-step synthesis of 2,3-disubstituted indenes from 2-bromobenzyl bromide and a variety of ketones using enolate alkylation, the Nozaki-Takai-Hiyama-Kishi Ni(II)/Cr(II)-mediated coupling of aryl bromides with ketone carbonyls and dehydration of the subsequently formed benzylic alcohol.<sup>5</sup> Here, we report the application of this method to the synthesis of chiral annulated indenes 1-3 from (1R)-(+)-camphor, (1R,5S)-(+)-nopinone, and (-)-menthone and 2-bromobenzyl bromide in moderate to very good yields.<sup>6</sup>

#### 2. Results and discussion

In the synthesis of the (1R)-(+)-camphor annulated indene 1, good selectivity was achieved by alkylating the lithium enolate of camphor at room temperature with an excess of 2-bromobenzyl bromide. After removal of unalkylated camphor by filtration, distillation was used to remove remaining 2-bromobenzyl bromide and the product 5 was isolated as a colorless oil. The tethered ketone was easily cyclized with excess CrCl<sub>2</sub> and catalytic NiCl<sub>2</sub> in DMF at 125°C overnight. After workup, the resultant alcohol was quantitatively converted to the methanesulfonate ester and eliminated using excess triethylamine in refluxing benzene to give indene 1 as a brown oil. After purification by chromatography indene 1 was isolated in 54% overall yield for the alkylation, coupling and elimination reactions.

Alkylation of the (1R,5S)-(+)-nopinone lithium enolate with 2-bromobenzyl bromide under the same conditions proceeded regio- and stereoselectively with moderate to good yields. The tethered ketone 7 was purified by recrystallization as a white solid from hexanes. The



<sup>\*</sup> Corresponding authors. Tel.: 1-405-325-4811; fax: 1-405-325-6111; e-mail: rhalterman@ou.edu

3a: trans / 3b: cis

CrCl<sub>2</sub> promoted, NiCl<sub>2</sub> catalyzed coupling of ketone 7 would only proceed at the elevated temperatures (145°C) over a prolonged time period (80 h), so that the dehydrated product was isolated upon aqueous workup. The nopinanyl annulated indene 2, a yellow oil, was easily separated by column chromatography from the side product (yellow oil, 20%), a diol resulting from intermolecular carbonyl addition, for a yield of 39%.

The alkylation of the enolate of (–)-menthone with 2-bromobenzylbromide was performed at 0°C to give substituted menthone **9** as a single stereoisomer in moderate yield after purification. The chromium-promoted coupling proceeded at 125°C with very good yield (89%). Unfortunately, these condit2ions caused epimerization of the isopropyl group. When a 6N HCl workup was used to dehydrate the alcohols, a 1:1 diastereomeric mixture of *cis* and major isomers and **3b** was obtained. After stirring in CHCl<sub>3</sub> with cat. TsOH at room temperature, the menthyl annulated indene mixture isomerized to an improved ratio of 2:1. The isomers were inseparable by preparative chromatography.

In summary, we have synthesized chiral annulated indenes from (1R)-(+)-camphor, (1R,5S)-(+)-nopinone, and (-)-menthone using a modification of the Nozaki–Takai–Hiyama–Kishi Ni(II)/Cr(II)-mediated coupling. This facile synthesis of chiral annulated indenes should now enable a more extensive investigation of the chemistry of chiral indenylmetal complexes—work that is now in progress in our laboratories.

### Acknowledgements

We thank the Oklahoma Center for the Advancement of

Science and Technology in cooperation with Chevron Phillips Chemical Company, LP (AR7-11) and the National Science Foundation (CHE-0091770) for support of this work.

#### References

- (a) Halterman, R. L. In *Metallocenes*; Togni, A.; Halterman, R. L., Eds.; Wiley-VCH: Weinheim, 1998; pp. 455–544; (b) Halterman, R. L. *Chem. Rev.* 1992, 92, 965–994.
- (a) Erker, G.; Aulbach, M.; Krueger, C.; Werner, S. J. Organomet. Chem. 1993, 450, 1–7; (b) Schumann, H.; Stenzel, O.; Girgsdies, F. Organometallics 2001, 20, 1743–1751; (c) Halterman, R. L.; Fahey, D. R.; Bailly, E. F.; Docter, D. W.; Stenzel, O.; Shipman, J. L.; Khan, M. A.; Dechert, S.; Schumann, H. Organometallics 2000, 19, 5464–5470.
- Chen, Z.; Halterman, R. L. J. Am. Chem. Soc. 1992, 114, 2276–2277.
- (a) Liu, C.; Sowa, J. R., Jr. *Tetrahedron Lett.* 1996, *37*, 7241–7244; (b) Rupert, K. C.; Liu, C. C.; Nguyen, T. T.; Whitener, M. A.; Sowa, J. R., Jr. *Organometallics* 2002, *21*, 144–149.
- (a) Halterman, R. L.; Zhu, C. Tetrahedron Lett. 1999, 40, 7445–7448; (b) Takai, K.; Kimura, K.; Kuroda, T.; Hiyama, T.; Nozaki, H. Tetrahedron Lett. 1983, 24, 5281–5284; (c) Kishi, Y. Pure Appl. Chem. 1992, 64, 343–350; (d) Jin, H.; Uenishi, J.; Christ, W. J.; Kishi, Y. J. Am. Chem. Soc. 1986, 108, 5644–5646; (e) Chen, C.; Tagami, K.; Kishi, Y. J. Org. Chem. 1995, 60, 5386–5387; (f) Stamos, D. P.; Sheng, C.; Chen, S. S.; Kishi, Y. Tetrahedron Lett. 1997, 38, 6355–6358.
- The preparation of tethered ketones and indenes followed the general synthetic procedure given in: Halterman, R. L.;
   Zhu, C. Tetrahedron Lett. 1999, 40, 7445–7448 with any

modifications reported here in the results and discussion section. The (1*R*,5*S*)-(+)-nopinone was prepared by ozonolysis of (-)-β-pinene following a procedure described in: Boger, D. L.; Mullican, M. D.; Hellberg, M. R.; Patel, M. *J. Org. Chem.* **1985**, *50*, 1904–1911. Compounds **1–3**, **5**, **7**, and **9** were characterized by spectroscopic methods. Selected data for these compounds are given here.

5: MS (EI, 70 eV, rel. %) 321 (4, M<sup>+</sup>), 241 (100, loss of Br\*), 95 (13);  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.53 (d, J=7.5 Hz, 1H), 7.24 (m, 2H), 7.06 (ddd, J=3.0, 6.0, 7.5 Hz, 1H), 3.20 (dd, J=14.0, 4.5 Hz, 1H), 2.84 (ddd, J=10.0, 4.5, 4.0 Hz, 1H), 2.71 (dd, J=14.0, 10.0 Hz, 1H), 1.95 (br. dd, J=3.5, 4.0 Hz, 1H), 1.80–1.66 (m, 3H), 1.40 (m, 1H), 0.98 (s, 3H), 0.93 (s, 3H), 0.87 (s, 3H).

1: MS (EI, 70 eV, rel. %) 224 (90, M<sup>+</sup>), 181 (100), 179 (76), 165 (69), 91 (16);  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.37 (d, J=7.5 Hz, 1H), 7.30 (d, J=7.5 Hz, 1H), 7.19 (dd, J=7.5, 7.5 Hz, 1H), 7.04 (dd, J=7.5, 7.5 Hz, 1H), 3.31 (d, J=23.0 Hz, 1H), 3.07 (d, J=23.0 Hz, 1H), 2.60 (d, J=3.5 Hz, 1H), 1.97 (dddd, J=12.0, 8.5, 3.5, 3.5 Hz, 1H), 1.71 (br. ddd, J=12.0, 8.5, 3.5 Hz, 1H), 1.39 (s, 3H), 1.09 (ddd, J=12.0, 9.0, 3.5 Hz, 1H), 0.91 (ddd, J=12.0, 9.0, 3.5 Hz, 1H), 0.87 (s, 3H), 0.83 (s, 3H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$ : 153.3 (C), 151.7 (C), 147.3 (C), 142.3 (C), 126.2 (CH), 124.4 (CH), 123.0 (CH), 118.4 (CH), 61.0 (C), 53.4 (C), 52.4 (CH), 34.9 (CH<sub>2</sub>), 33.5 (CH<sub>2</sub>), 26.4 (CH<sub>2</sub>), 20.5 (CH<sub>3</sub>), 19.8 (CH<sub>3</sub>), 12.5 (CH<sub>3</sub>).

7: Mp=117-120°C; MS (EI, 70 eV, rel. %) 307 (12, M<sup>+</sup>), 227 (100, loss of Br\*), 171 (26), 157 (21), 95 (20); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.51 (d, J=8.0 Hz, 1H), 7.27 (d, J=8.0 Hz, 1H), 7.21 (dd, J=8.0, 8.0 Hz, 1H), 7.05 (dd, J=8.0, 8.0 Hz, 1H), 3.60 (dd, J=13.5, 4.5 Hz, 1H), 3.01 (ddd, J=10.0, 8.5, 4.5 Hz, 1H), 2.62 (dd, J=5.0, 5.0 Hz, 1H), 2.60 (dd, J=13.5, 10.0 Hz, 1H), 2.42 (ddd, J=10.0, 5.0, 5.0 Hz, 1H), 2.19 (ddd, J=4.5, 5.0, 5.0 Hz, 1H), 1.99 (ddd, J=13.5, 10.0, 4.5 Hz, 1H), 1.68 (d, J=10.0 Hz, 1H), 1.62 (dd, J=13.5, 8.5 Hz, 1H), 1.31 (s, 3H), 0.79 (s, 3H). 2: MS (EI, 70 eV, rel. %) 210 (100, M<sup>+</sup>), 195 (8), 167 (13),

165 (10); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.39 (d, J=7.5 Hz, 1H), 7.22 (dd, J=7.5, 7.5 Hz, 1H), 7.15 (d, J=7.5 Hz, 1H), 7.07 (dd, J=7.5, 7.5 Hz, 1H), 3.29 (d, J=23.0 Hz, 1H), 3.24 (d, J=23.0 Hz, 1H), 2.77 (dd, J=5.5, 5.5 Hz, 1H), 2.69 (dd, J=18.0, 3.0 Hz, 1H), 2.62 (dd, J=18.0, 3.0 Hz, 1H), 2.62 (dd, J=18.0, 3.0 Hz, 1H), 2.61 (ddd, J=9.0, 5.5, 5.5 Hz, 1H), 2.29 (dddd, J=3.0, 3.0, 5.5, 5.5 Hz, 1H), 1.42 (s, 3H), 1.33 (d, J=9.0 Hz, 1H), 0.72 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$ : 148.2 (C), 145.2 (C), 144.4 (C), 137.8 (C), 126.2 (CH), 123.8 (CH), 123.5 (CH), 117.4 (CH), 42.0 (CH), 40.7 (C), 39.43 (CH), 38.9 (CH<sub>2</sub>), 33.1 (CH<sub>2</sub>), 31.6 (CH<sub>2</sub>), 26.8 (CH<sub>3</sub>), 21.6 (CH<sub>3</sub>).

9: MS (EI, 70 eV, rel. %) 323 (13, M+), 243 (100, loss of Br<sup>•</sup>), 187 (53), 159 (15), 131 (18), 107 (28); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.45 (d, J=7.5 Hz, 1H), 7.42 (d, J=7.5Hz, 1H), 7.15 (dd, J=7.5, 7.5 Hz, 1H), 6.98 (dd, J=7.5, 7.5 Hz, 1H), 3.11 (dd, J=13.5, 9.5 Hz, 1H) 2.83 (dd, J=13.5, 3.0 Hz, 1H), 2.52 (ddd, J=3.0, 9.5, 12.0 Hz, 1H), 2.08 (m, 1H), 2.04 (m, 1H), 2.00 (dsept, J=6.5, 6.5 Hz, 1H), 1.88 (dddd, J = 5.5, 5.5, 5.5, 13.5 Hz, 1H), 1.67 (dddq, J=12.0, 11.5, 4.0, 7.0 Hz, 1H), 1.52 (dddd, J=13.0, 12.0, 12.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.12.0, 4.0 Hz, 1H), 1.31 (dddd, J = 13.0, 11.5, 11.5, 4.0 Hz, 1H), 1.21 (d, J=7.0 Hz, 3H), 0.81 (d, J=6.5 Hz, 3H), 0.76 (d, J=6.5 Hz, 3H). 3a/3b: IR (thin film) 3045, 3000, 2940, 1595, 1450; MS (EI, 70 eV, rel. %) 226 (100, M<sup>+</sup>), 211 (14), 183 (70), 167 (11), 155 (22), 141 (23); **3a** (trans isomer) <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.40 (d, J=7.5 Hz, 1H), 7.36 (d, J=7.5 Hz, 1H), 7.22 (dd, J=7.5, 7.5 Hz, 1H), 7.10 (dd,J=7.5, 7.5 Hz, 1H), 3.35 (dd, J=3.0, 23.0 Hz, 1H), 3.28 (d, J=23.0 Hz, 1H), 2.69 (m, 1H), 2.55 (m, 1H), 2.53 (m, 1H), 1.96 (m, 1H), 1.80 (m, 1H), 1.64 (m, 1H), 1.28 (m, 1H), 1.16 (d, J = 7.0 Hz, 3H), 1.06 (d, J = 7.0 Hz, 3H), 0.72 (d, J=7.0 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$ : 147.9 (C), 146.2 (C), 143.4 (C), 138.5 (C), 126.0 (CH), 123.6 (CH), 123.5 (CH), 119.9 (CH), 39.5 (CH), 38.8 (CH<sub>2</sub>), 31.3 (CH), 30.9 (CH<sub>2</sub>), 29.7 (CH), 21.7 (CH<sub>3</sub>), 21.7 (CH<sub>2</sub>), 21.4 (CH<sub>3</sub>), 17.9 (CH<sub>3</sub>).